121 research outputs found

    Comparison of embedded and added motor imagery training in patients after stroke: Study protocol of a randomised controlled pilot trial using a mixed methods approach

    Get PDF
    Copyright @ 2009 Schuster et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Two different approaches have been adopted when applying motor imagery (MI) to stroke patients. MI can be conducted either added to conventional physiotherapy or integrated within therapy sessions. The proposed study aims to compare the efficacy of embedded MI to an added MI intervention. Evidence from pilot studies reported in the literature suggests that both approaches can improve performance of a complex motor skill involving whole body movements, however, it remains to be demonstrated, which is the more effective one.Methods/Design: A single blinded, randomised controlled trial (RCT) with a pre-post intervention design will be carried out. The study design includes two experimental groups and a control group (CG). Both experimental groups (EG1, EG2) will receive physical practice of a clinical relevant motor task ('Going down, laying on the floor, and getting up again') over a two week intervention period: EG1 with embedded MI training, EG2 with MI training added after physiotherapy. The CG will receive standard physiotherapy intervention and an additional control intervention not related to MI.The primary study outcome is the time difference to perform the task from pre to post-intervention. Secondary outcomes include level of help needed, stages of motor task completion, degree of motor impairment, balance ability, fear of falling measure, motivation score, and motor imagery ability score. Four data collection points are proposed: twice during baseline phase, once following the intervention period, and once after a two week follow up. A nested qualitative part should add an important insight into patients' experience and attitudes towards MI. Semi-structured interviews of six to ten patients, who participate in the RCT, will be conducted to investigate patients' previous experience with MI and their expectations towards the MI intervention in the study. Patients will be interviewed prior and after the intervention period.Discussion: Results will determine whether embedded MI is superior to added MI. Findings of the semi-structured interviews will help to integrate patient's expectations of MI interventions in the design of research studies to improve practical applicability using MI as an adjunct therapy technique

    A review of elliptical and disc galaxy structure, and modern scaling laws

    Full text link
    A century ago, in 1911 and 1913, Plummer and then Reynolds introduced their models to describe the radial distribution of stars in `nebulae'. This article reviews the progress since then, providing both an historical perspective and a contemporary review of the stellar structure of bulges, discs and elliptical galaxies. The quantification of galaxy nuclei, such as central mass deficits and excess nuclear light, plus the structure of dark matter halos and cD galaxy envelopes, are discussed. Issues pertaining to spiral galaxies including dust, bulge-to-disc ratios, bulgeless galaxies, bars and the identification of pseudobulges are also reviewed. An array of modern scaling relations involving sizes, luminosities, surface brightnesses and stellar concentrations are presented, many of which are shown to be curved. These 'redshift zero' relations not only quantify the behavior and nature of galaxies in the Universe today, but are the modern benchmark for evolutionary studies of galaxies, whether based on observations, N-body-simulations or semi-analytical modelling. For example, it is shown that some of the recently discovered compact elliptical galaxies at 1.5 < z < 2.5 may be the bulges of modern disc galaxies.Comment: Condensed version (due to Contract) of an invited review article to appear in "Planets, Stars and Stellar Systems"(www.springer.com/astronomy/book/978-90-481-8818-5). 500+ references incl. many somewhat forgotten, pioneer papers. Original submission to Springer: 07-June-201

    Linguistic validation, validity and reliability of the British English versions of the Disabilities of the Arm, Shoulder and Hand (DASH) questionnaire and QuickDASH in people with rheumatoid arthritis

    Get PDF
    Background: Although the Disabilities of the Arm, Shoulder and Hand (DASH) questionnaire is widely used in the UK, no British English version is available. The aim of this study was to linguistically validate the DASH into British English and then test the reliability and validity of the British English DASH, (including the Work and Sport/Music DASH) and QuickDASH, in people with rheumatoid arthritis (RA). Methods: The DASH was forward translated, reviewed by an expert panel and cognitive debriefing interviews undertaken with 31 people with RA. Content validity was evaluated using the ICF Core Set for RA. Participants with RA (n=340) then completed the DASH, Health Assessment Questionnaire (HAQ), Short Form Health Survey v2 (SF36v2) and Measure of Activity Performance of the Hand (MAPHAND). We examined internal consistency and concurrent validity for the DASH, Work and Sport/Music DASH modules and QuickDASH. Participants repeated the DASH to assess test-retest reliability. Results: Minor wording changes were made as required. The DASH addresses a quarter of Body Function and half of Activities and Participation codes in the ICF RA Core Set. Internal consistency for DASH scales were consistent with individual use (Cronbach’s alpha = 0.94-0.98). Concurrent validity was strong with the HAQ (rs = 0.69-0.91), SF36v2 Physical Function (rs = -0.71 - -0.85), Bodily Pain (rs = -0.71 - -0.74) scales and MAPHAND (rs =0.71-0.93). Test-retest reliability was good (rs = 0.74-0.95). Conclusions: British English versions of the DASH, QuickDASH and Work and Sport/Music modules are now available to evaluate upper limb disabilities in the UK. The DASH, QuickDASH, Work and Sport/Music modules are reliable and valid to use in clinical practice and research with British people with RA

    Jacobsen syndrome

    Get PDF
    Jacobsen syndrome is a MCA/MR contiguous gene syndrome caused by partial deletion of the long arm of chromosome 11. To date, over 200 cases have been reported. The prevalence has been estimated at 1/100,000 births, with a female/male ratio 2:1. The most common clinical features include pre- and postnatal physical growth retardation, psychomotor retardation, and characteristic facial dysmorphism (skull deformities, hypertelorism, ptosis, coloboma, downslanting palpebral fissures, epicanthal folds, broad nasal bridge, short nose, v-shaped mouth, small ears, low set posteriorly rotated ears). Abnormal platelet function, thrombocytopenia or pancytopenia are usually present at birth. Patients commonly have malformations of the heart, kidney, gastrointestinal tract, genitalia, central nervous system and skeleton. Ocular, hearing, immunological and hormonal problems may be also present. The deletion size ranges from ~7 to 20 Mb, with the proximal breakpoint within or telomeric to subband 11q23.3 and the deletion extending usually to the telomere. The deletion is de novo in 85% of reported cases, and in 15% of cases it results from an unbalanced segregation of a familial balanced translocation or from other chromosome rearrangements. In a minority of cases the breakpoint is at the FRA11B fragile site. Diagnosis is based on clinical findings (intellectual deficit, facial dysmorphic features and thrombocytopenia) and confirmed by cytogenetics analysis. Differential diagnoses include Turner and Noonan syndromes, and acquired thrombocytopenia due to sepsis. Prenatal diagnosis of 11q deletion is possible by amniocentesis or chorionic villus sampling and cytogenetic analysis. Management is multi-disciplinary and requires evaluation by general pediatrician, pediatric cardiologist, neurologist, ophthalmologist. Auditory tests, blood tests, endocrine and immunological assessment and follow-up should be offered to all patients. Cardiac malformations can be very severe and require heart surgery in the neonatal period. Newborns with Jacobsen syndrome may have difficulties in feeding and tube feeding may be necessary. Special attention should be devoted due to hematological problems. About 20% of children die during the first two years of life, most commonly related to complications from congenital heart disease, and less commonly from bleeding. For patients who survive the neonatal period and infancy, the life expectancy remains unknown

    EMIRGE: reconstruction of full-length ribosomal genes from microbial community short read sequencing data

    Get PDF
    Recovery of ribosomal small subunit genes by assembly of short read community DNA sequence data generally fails, making taxonomic characterization difficult. Here, we solve this problem with a novel iterative method, based on the expectation maximization algorithm, that reconstructs full-length small subunit gene sequences and provides estimates of relative taxon abundances. We apply the method to natural and simulated microbial communities, and correctly recover community structure from known and previously unreported rRNA gene sequences. An implementation of the method is freely available at https://github.com/csmiller/EMIRGE

    Differences in Cell Division Rates Drive the Evolution of Terminal Differentiation in Microbes

    Get PDF
    Multicellular differentiated organisms are composed of cells that begin by developing from a single pluripotent germ cell. In many organisms, a proportion of cells differentiate into specialized somatic cells. Whether these cells lose their pluripotency or are able to reverse their differentiated state has important consequences. Reversibly differentiated cells can potentially regenerate parts of an organism and allow reproduction through fragmentation. In many organisms, however, somatic differentiation is terminal, thereby restricting the developmental paths to reproduction. The reason why terminal differentiation is a common developmental strategy remains unexplored. To understand the conditions that affect the evolution of terminal versus reversible differentiation, we developed a computational model inspired by differentiating cyanobacteria. We simulated the evolution of a population of two cell types –nitrogen fixing or photosynthetic– that exchange resources. The traits that control differentiation rates between cell types are allowed to evolve in the model. Although the topology of cell interactions and differentiation costs play a role in the evolution of terminal and reversible differentiation, the most important factor is the difference in division rates between cell types. Faster dividing cells always evolve to become the germ line. Our results explain why most multicellular differentiated cyanobacteria have terminally differentiated cells, while some have reversibly differentiated cells. We further observed that symbioses involving two cooperating lineages can evolve under conditions where aggregate size, connectivity, and differentiation costs are high. This may explain why plants engage in symbiotic interactions with diazotrophic bacteria

    Finding the Needles in the Metagenome Haystack

    Get PDF
    In the collective genomes (the metagenome) of the microorganisms inhabiting the Earth’s diverse environments is written the history of life on this planet. New molecular tools developed and used for the past 15Β years by microbial ecologists are facilitating the extraction, cloning, screening, and sequencing of these genomes. This approach allows microbial ecologists to access and study the full range of microbial diversity, regardless of our ability to culture organisms, and provides an unprecedented access to the breadth of natural products that these genomes encode. However, there is no way that the mere collection of sequences, no matter how expansive, can provide full coverage of the complex world of microbial metagenomes within the foreseeable future. Furthermore, although it is possible to fish out highly informative and useful genes from the sea of gene diversity in the environment, this can be a highly tedious and inefficient procedure. Microbial ecologists must be clever in their pursuit of ecologically relevant, valuable, and niche-defining genomic information within the vast haystack of microbial diversity. In this report, we seek to describe advances and prospects that will help microbial ecologists glean more knowledge from investigations into metagenomes. These include technological advances in sequencing and cloning methodologies, as well as improvements in annotation and comparative sequence analysis. More significant, however, will be ways to focus in on various subsets of the metagenome that may be of particular relevance, either by limiting the target community under study or improving the focus or speed of screening procedures. Lastly, given the cost and infrastructure necessary for large metagenome projects, and the almost inexhaustible amount of data they can produce, trends toward broader use of metagenome data across the research community coupled with the needed investment in bioinformatics infrastructure devoted to metagenomics will no doubt further increase the value of metagenomic studies in various environments

    Assessment of Metagenomic Assembly Using Simulated Next Generation Sequencing Data

    Get PDF
    Due to the complexity of the protocols and a limited knowledge of the nature of microbial communities, simulating metagenomic sequences plays an important role in testing the performance of existing tools and data analysis methods with metagenomic data. We developed metagenomic read simulators with platform-specific (Sanger, pyrosequencing, Illumina) base-error models, and simulated metagenomes of differing community complexities. We first evaluated the effect of rigorous quality control on Illumina data. Although quality filtering removed a large proportion of the data, it greatly improved the accuracy and contig lengths of resulting assemblies. We then compared the quality-trimmed Illumina assemblies to those from Sanger and pyrosequencing. For the simple community (10 genomes) all sequencing technologies assembled a similar amount and accurately represented the expected functional composition. For the more complex community (100 genomes) Illumina produced the best assemblies and more correctly resembled the expected functional composition. For the most complex community (400 genomes) there was very little assembly of reads from any sequencing technology. However, due to the longer read length the Sanger reads still represented the overall functional composition reasonably well. We further examined the effect of scaffolding of contigs using paired-end Illumina reads. It dramatically increased contig lengths of the simple community and yielded minor improvements to the more complex communities. Although the increase in contig length was accompanied by increased chimericity, it resulted in more complete genes and a better characterization of the functional repertoire. The metagenomic simulators developed for this research are freely available

    A Systematic Analysis of Cell Cycle Regulators in Yeast Reveals That Most Factors Act Independently of Cell Size to Control Initiation of Division

    Get PDF
    Upstream events that trigger initiation of cell division, at a point called START in yeast, determine the overall rates of cell proliferation. The identity and complete sequence of those events remain unknown. Previous studies relied mainly on cell size changes to identify systematically genes required for the timely completion of START. Here, we evaluated panels of non-essential single gene deletion strains for altered DNA content by flow cytometry. This analysis revealed that most gene deletions that altered cell cycle progression did not change cell size. Our results highlight a strong requirement for ribosomal biogenesis and protein synthesis for initiation of cell division. We also identified numerous factors that have not been previously implicated in cell cycle control mechanisms. We found that CBS, which catalyzes the synthesis of cystathionine from serine and homocysteine, advances START in two ways: by promoting cell growth, which requires CBS's catalytic activity, and by a separate function, which does not require CBS's catalytic activity. CBS defects cause disease in humans, and in animals CBS has vital, non-catalytic, unknown roles. Hence, our results may be relevant for human biology. Taken together, these findings significantly expand the range of factors required for the timely initiation of cell division. The systematic identification of non-essential regulators of cell division we describe will be a valuable resource for analysis of cell cycle progression in yeast and other organisms
    • …
    corecore